Robot Learning
نویسندگان
چکیده
Robot learning consists of a multitude of machine learning approaches, particularly reinforcement learning, inverse reinforcement learning, and regression methods, that have been adapted su ciently to domain so that they allow learning in complex robot systems such as helicopters, apping-wing ight, legged robots, anthropomorphic arms and humanoid robots. While classical arti cial intelligence-based robotics approaches have often attempted to manually generate a set of rules and models that allows the robot systems to sense and act in the real-world, robot learning centers around the idea that it is unlikely that we can foresee all interesting real-world situations su ciently accurate. Hence, the eld of robot learning assumes that future robots need to be able to adapt to the real-world, and domain-appropriate machine learning might o er the most approach in this direction.
منابع مشابه
Dynamic Obstacle Avoidance by Distributed Algorithm based on Reinforcement Learning (RESEARCH NOTE)
In this paper we focus on the application of reinforcement learning to obstacle avoidance in dynamic Environments in wireless sensor networks. A distributed algorithm based on reinforcement learning is developed for sensor networks to guide mobile robot through the dynamic obstacles. The sensor network models the danger of the area under coverage as obstacles, and has the property of adoption o...
متن کاملA Q-learning Based Continuous Tuning of Fuzzy Wall Tracking
A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...
متن کاملبهبود یادگیری رفتار روبات سیار دارای خطا در سنسورهای آن با استفاده از شبکه بیزین
In this paper a new structure based on Bayesian networks is presented to improve mobile robot behavior, in which there exist faulty robot sensors. If a robot likes to follow certain behavior in the environment to reach its goal, it must be capable of making inference and mapping based on prior knowledge and also should be capable of understanding its reactions on the environment over time. Old ...
متن کاملVisual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot
The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...
متن کاملNavigation of a Mobile Robot Using Virtual Potential Field and Artificial Neural Network
Mobile robot navigation is one of the basic problems in robotics. In this paper, a new approach is proposed for autonomous mobile robot navigation in an unknown environment. The proposed approach is based on learning virtual parallel paths that propel the mobile robot toward the track using a multi-layer, feed-forward neural network. For training, a human operator navigates the mobile robot in ...
متن کاملAn Unsupervised Learning Method for an Attacker Agent in Robot Soccer Competitions Based on the Kohonen Neural Network
RoboCup competition as a great test-bed, has turned to a worldwide popular domains in recent years. The main object of such competitions is to deal with complex behavior of systems whichconsist of multiple autonomous agents. The rich experience of human soccer player can be used as a valuable reference for a robot soccer player. However, because of the differences between real and simulated soc...
متن کامل